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Abstract. For a quasi-one-dimensional ‘sawtooth’ topology we show that the quantum 
mechanical ground state of the Heisenberg Hamiltonian has only nearest neighbour singlet 
correlations. The ground state is multiply degenerate with precisely as many ground states 
as atoms in the system. In fact we can associate each ground state with a special site that has 
a fixed spin. Allowing this special site to become a hole, in a frustrated t-Jdescription, allows 
us to deduce the ground state for the motion of one hole in the presence of the Heisenberg 
interactions. When the hopping is unfrustrated we look at the competition between t and J 
and find a reasonable description for a ‘polaron’. The polaron maintains low spin. 

1. Introduction 

A central theme of solid state physics is the electronic properties of matter. The fun- 
damental physical phenomena at work are: Pauli exclusion because electrons are fer- 
mions and Coulomb repulsion because electrons are charged, which try to keep electrons 
apart, competing with chemical bonding which comes from the attraction to the positive 
nuclei in the relevant configuration and the kinetic energy of the electronic motion. 
When chemical bonding dominates, the electronic properties are well modelled by band 
theory, but when Coulomb repulsion dominates, modelling is more difficult. In this 
article, we are interested in the limit of strong Coulomb repulsion, which has become 
known as the strong coupling limit. 

Perhaps the simplest model which displays the basic phenomena is the Hubbard 
model [ 11 : 

which is a single orbital tight binding model. The ci, create electrons of spin (r (comp- 
lementary spin 8) on the ith atom and obey anticommutation relations. The first term 
corresponds to chemical bonding and is assumed to contribute only to the nearest 
neighbour atoms, denoted by (ii’), and the second term corresponds to short range 
Coulomb repulsion and is assumed to contribute only when the two electrons are on the 
same atom. This model was designed to represent the narrow band electrons found in 
transition metals and we also have this physical picture in mind. 

When the chemical bonding or ‘hopping’ dominates, viz t %- U where t is assumed 
positive, we find a free electron picture with a well defined band structure. The effects 
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of the Coulomb repulsion may be included using the Hartree-Fock approximation, but 
this does not alter the basic physical picture until the advent of itinerant magnetism at 
the Stoner criterion [2]. The description is valid for all densities of electrons and suggests 
very similar behaviour at all densities until magnetism with its various spatial symmetries 
intercedes [3]. 

When the Coulomb repulsion dominates, viz U S  t ,  we find descriptions which 
depend strongly on the density of electrons. To leading order the Coulomb repulsion 
prohibits double occupancy of sites and we find: 

H o  = -t 2 (1 - c~ecid)c:ucf 'u (1 - c;,,Ci'b) 
(ii')u 

(1.2) 

where the additional projection operators restrict hops from singly occupied atoms to 
neighbouring vacant atoms. Since only one electron can sit on any one atom at any one 
time, there is a spin degeneracy while the electron is on the atom. The manner in which 
the degeneracy is lifted, if it is lifted, is the basic physical question. In general this 
question is very difficult to answer, but there are two limits which are amenable to 
analysis. Before we move on to an analysis of these two limits, we point out the role 
of topology in this problem, since the two cases treated in this article have 'special' 
topologies. 

Most simple lattices are bipartite, which means that the lattice splits quite naturally 
into two sublattices for which all nearest neighbours of one sublattice are on the other 
sublattice. Changing the relative sign of the states on these two sublattices leads to 
invariance when the sign of the hopping matrix element is reversed. Combining this 
symmetry with mapping particles onto holes then leads to particle-hole symmetry for 
the Hubbard model. There is a special class of topologies, including the two cases studied 
in the present article, which do not exhibit particle-hole symmetry. In this paper we will 
assume that the hopping matrix element, t ,  is positive and we will show that holes and 
particles exhibit quite different behaviour. 

Returning to the two tractable cases, the first is when there are only two electrons in 
the system, then the spin symmetry is either singlet, suggesting paramagnetism in the 
low density limit, or triplet, suggesting ferromagnetism in the low density limit. It turns 
out that the connectivity of the lattice decides this question with a singlet being the usual 
ground state [4] and the triplet is only found when the two particles are holes and the 
lattice connectivity is antiferromagnetically frustrated [5] .  The lattice connectivities that 
we consider in this article are all frustrated and this was one of our motivations in 
commencing this study. 

The second amenable limit is when all sites except one have one electron and the 
final atom has either no electrons or two electrons and has the only mobile charge carrier. 
The magnetic coherence predicted in this limit constitutes the Nagaoka problem and 
was shown to be usually ferromagnetic by Nagaoka [6].  The only case where ferro- 
magnetism is not predicted is when the charge carrier is a hole and again the lattice 
connectivity is antiferromagnetically frustrated. It is not known what type of magnetic 
coherence results for the case of frustrated topologies and in this article we exactly 
solve the Nagaoka problem for two very simple non-trivial one-dimensional frustrated 
topologies, showing that the ground state is a total spin singlet with short range singlet 
bonds in both cases. 

Although the Nagaoka problem gives an indication of the magnetic coherence 
preferred by a charge carrier in a strong coupling system, there is an important proviso. 
Although the motion of the charge carrier breaks the spin degeneracy at order t ,  there 
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is only one charge carrier and so there is no macroscopic contribution to the total energy 
until the density of charge carriers is finite. The correction to the Nagaoka Hamiltonian 
in this limit does give a macroscopic contribution and so should have a region of 
dominance. This conflict of interests is the major area of concern in this article. 

The leading correction to the Nagaoka Hamiltonian is [7]: 

the Heisenberg Hamiltonian [8] where the antiferromagnetic coupling is J = 4t2/U, the 
spin operators are S i  = i Zaot ~ $ 6 , ~ ~  cia, ,  B are Pauli matrices and we are including each 
bond with a single J .  

When there is precisely one electron per site, then none of the electrons can move 
and we find a Mott insulator [9]. The Heisenberg Hamiltonian is the leading order 
interaction between the localised spins. The Heisenberg Hamiltonian is of interest in its 
own right as a model for localised magnetism when the hopping is frozen out. 

Although the classical limit of the Heisenberg model, when the total spin is large, is 
soluble, the quantum mechanical model has proven very difficult to solve in general and 
even the solution to the one dimensional chain required the Bethe ansatz [lo]. It is 
generally believed that long range Nee1 antiferromagnetism with a reduced moment is 
the ground state of non-frustrated topologies, where long range order is allowed, but in 
frustrated systems there is controversy and the triangular lattice Heisenberg model was 
the original system for which the resonating valence bond state was proposed [ll]. In 
this article we present a non-trivial exactly soluble quantum mechanical ground state to 
a Heisenberg model on a one-dimensional frustrated topology. 

There has been a recent resurgence of interest in the competition between Hei- 
senberg and Nagaoka interactions due to high temperature superconductivity. In these 
materials there is a Mott insulating parent compound which exhibits NCel order. Upon 
doping the NCel order is lost and replaced by superconductivity. This behaviour is being 
modelled by the strong coupling t-J model of (1.2) combined with (1.3). The parent 
compound corresponds to the half filled Heisenberg antiferromagnet and super- 
conductivity is associated with the added charge carriers moving around using the 
Nagaoka Hamiltonian in the presence of the Heisenberg interactions [ 121. The topology 
of the spins is the unfrustrated square lattice of copper atoms, but if the charge resides 
as holes on oxygen sites then there are limits where the hole motion is both frustrated 
and unfrustrated [ 131, 

The biggest problem in analysing the t-J model is that the Heisenberg ground State of 
the relevant topology is unknown and the natural analysis involves treating the Hei- 
senberg ground state as a reference and then including a charge carrier moving by 
Nagaoka hops ‘perturbatively’. There have been two basic approaches: firstly the spins 
can be treated as classical and then the ground state is soluble and the charge motion 
can be properly handled [14] and secondly simultaneous approximations can be made 
in treating both interactions [15]. Neither of these two approaches is particularly satis- 
fying as it is unclear as to the source of the effects found in any treatment. In this article 
we have an exact quantum mechanical ground state and so we need only treat one of the 
two terms perturbatively. The basic physical picture proposed for this model is ‘spin 
polarons’ [16]. The Nagaoka interactions drive a small region around the charge carrier 
from Heisenberg correlations into Nagaoka correlations and the composite object 
drifts slowly about the lattice. For the square lattice, these ideas suggest ferromagnetic 
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Figure 1. The ‘sawtooth’ topology. Each bond is assumed identical 

correlations around the charge, which are not observed in exact cluster calculations [17]. 
We will look for analytic polarons in our model in order to test these ideas. 

In this article we have forsaken the physical topology in favour of a topology which 
allows an exact analysis. This allows us to make unequivocal statements about our 
particular connectivity and hence make some of the physical ideas concrete, but the 
connection to the experimental systems is rather tenuous. 

In section 2 we present the exact ground states on our chosen topologies and in 
section3 we analyse the competition between the Heisenberg and Nagaokacontributions 
and the validity of the polaronic ideas. 

2. Exact solutions 

2.1 .  The ‘sawtooth’geometry 

The ‘sawtooth’ connectivity considered in this article is depicted in figure 1. Each bond 
is assumedidentical and we find two distinct types of sites. ‘Backbone’ sites are connected 
to two other backbone sites and two ‘vertex’ sites, whereas vertex sitesare only connected 
to two backbone sites. The best way to picture this topology is as a string of equilateral 
triangles connected in a chain. 

The Heisenberg Hamiltonian on this topology can be rewritten as: 

where the sum is over all triangles, denoted by T,  and the spins SI, S2 and S3 lie on the 
vertices of the triangles. It is clear that each triangle must have the lowest possible total 
spin simultaneously allowable in the ground state. The simple observation that allows a 
solution to this problem is that, due to the fact that there are two distinct spin half states 
for the triangle, we can simultaneously make all triangles have total spin 1/2, the 
minimum possible. The energy of this state is Eo = -(3/4)JNr where NT is the number 
of triangles. We use this energy scale to define our Heisenberg vacuum for the rest of 
this article. 

In this article we use valence bond representations for our spin configurations. Low 
spin states are achieved by pairing up electrons into singlet configurations or valence 
bonds. Any remaining electrons are all assumed to have parallel spins. This choice of 
basis ensures that the states used are eigenstates of the total spin with a total spin 
corresponding to the spin of the unpaired electrons. There is one major subtlety in 
employing this type of basis: non-orthogonality. Although the total spin of the states is 
known, the different basis states have non-trivial overlaps with each other and if all 
possible pairings are included then the basis is ouercomplete. As well as being an 
eigenstate of the total spin, a valence bond state is also an eigenstate of some restricted 
total spin operators. The total spin of any two paired electrons is zero and further the 
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Figure 2. A ground state for the Heisenberg Hamiltonian on the ‘sawtooth’ geometry. The 
lines with ‘encircled’ ends denote singlet bonds. 

total spin of any set of electrons all of which are paired is also zero. The fact which leads 
us to the solution of our Heisenberg model is that the total spin of a set of electrons all 
bar one of which are paired is total spin hulf. For the ‘sawtooth’ topology each triangle 
has total spin half if it includes a valence bond and there are various ways to lay down 
valence bonds and ensure this. 

One of the degenerate ground states is depicted in figure 2. The ‘special’ site with 
the ‘bare’ spin can be chosen anywhere on the lattice and serves to label the ground state 
degeneracy. This is the first situation where non-orthogonality causes confusion. As the 
‘bare’ spin is moved around, the resulting basis is ouercomplete. If we choose the special 
site to be each vertex of a particular triangle in turn, then the three corresponding ground 
states are linearly dependent. In fact a complete basis of ‘up’ ground states can be 
obtained by restricting the special site to the backbone and the same goes for ‘down’ 
sites. Although there are as many ground states as atoms in the lattice, they split into 
two because the total spin of the state has been chosen to be a half. 

This analysis can also be applied to the linear chain connectivity and although we 
may arrive at the decoupling into distinct bonds of (2.1), it is not possible to simul- 
taneously choose all bonds to be total spin zero which is where the two problems part 
company. 

Our choice of free boundary conditions plays an active role in the present analysis. 
If we were to assume periodic boundary conditions, then there would be only two ground 
states and no special site from which the Nagaoka ground state could be deduced. As 
the system size diverges, the results should not depend critically on boundary conditions 
and so we chose the boundary conditions most suitable to our requirements. 

The next natural question to ask is about excitations. The enormous degeneracy of 
the ground state confuses the issue, but it turns out to be possible to construct a hierarchy 
of local excitations which are all eigenstates of the Heisenberg Hami!tonian and include 
all the possible local spin configurations. The basic idea is to observe that if we cut the 
chain at the special site and include some extra triangles, whatever spin configuration 
we choose for the additional triangles, the Heisenberg interactions can never alter the 
spin arrangement in the original lattice. The valence bond state of figure 2 is therefore 
locally an eigenstate. A second way to consider the excitations, corresponds to breaking 
bonds in the vicinity of the special site. The justification is the same, but this second idea 
is the natural way to consider excitations infinite systems where the number of atoms is 
constant. We depict a few of these excitations in figure 3, including all the possibilities 
when either one or two new triangles are included. Analysis of larger clusters yields the 
belief that the excitation spectrum is gapless. At the three triangle level there is a spin 
three-halves state at energy Eo + 0.3654Jfor example. Clearly as the size of the inclusion 
diverges so we can describe all the possible spin configurations. The only source of 
concern is that this local description of excitations is over complete and non-orthogonal. 

Now let us move on to the Nagaoka problem and consider the motion of a charge 
carrier in the system. The single-particle excitation spectrum can be deduced from the 
two atom per unit cell basis: 
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Figure3. Local excitations of the Heisenberg Hamiltonian acting on the 'sawtooth' topology. 
The lines with 'encircled' ends denote singlet bonds. 

-1 

- 2  

-3 

/ i 

ak/n 
Figure 4. The band structure of non-interacting electrons in the 'sawtooth' geometry, 

1 2 cos(ak/2) 

2 cos(ak/2) 4 cos2(ak/2) - 2 
H o  = (-i)[o 

which diagonalises to yield the band structure: 

E ;  = (-t)[2 cos*(ak/2) - 1 t V(l + 4 cos4(ak/2))] (2.3) 
which is depicted in figure 4. It is clear that the topology is antiferromagnetically 
frustrated as there are triangles in the connectivity. Another way to observe the 
frustration, which also yields a measure of the effect, is to look at the band structure. 
Although the lowest energy is -3.2361t, which is the unfrustrated limit, the highest 
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Figure 5 .  The ‘diamond’ topology. Each bond is assumed identical. 

energy is only 2.0t. The difference between these two values is a fair measure of the 
extent to which the lattice is frustrated. 

In the Nagaoka problem, one hole is doped into an otherwise half filled lattice, 
subject to the constraint that at most one electron can sit on any one site at any one time. 
If the band were purely ferromagnetic, then the best one could do would be to take the 
electron from the highest state in the band structure of figure 4. The question is, is it 
possible to choose the spin arrangement of the half filled state in such a way that the 
electron can be extracted from a state of higher energy? 

Let us consider the state depicted in figure 2 ,  where the bare spin is replaced by the 
added hole. As the hopping Hamiltonian moves the hole around, we find that we connect 
together all the states which made up the ground state manifold of the Heisenberg 
Hamiltonian. In this context the orthonormality is not a problem and we find precisely 
the same number of states as atoms in the lattice. With a careful choice of signs, we 
discover that in the two-atom basis the hopping Hamiltonian for a delocalised hole 
becomes identical to (2 .2) .  The nearest neighbour spin configuration unfrustrates the 
hole motion completely and in this state the hole energy achieves its theoretical bound 
and we find the Nagaoka ground state. An added hole drives the spin background into 
a short range singlet state. 

Now let us consider the full t-J model in the presence of the added charge carrier. It 
turns out that the bare spin gains zero energy from its bonds since it has a quarter 
probability of being in a singlet and three quarters probability of being in two of the 
three triplet states. It therefore follows that cutting the bonds by replacing the bare spin 
by a hole does not change the Heisenberg energy at all. In the presence of the charge 
carrier, the state is an eigenstate of the Heisenberg Hamiltonian and further is the 
ground state. The quantum mechanical Heisenberg model and strong coupling Hubbard 
model are simultaneously soluble when there is one hole in an otherwise half filled 
‘sawtooth’ connectivity. The topology is effectively unfrustrated by the spin state and 
we obtain the lowest conceivable ground state energy of Eo - 3.2361~. 

So far we have considered the case of frustrated hopping. If the hopping matrix 
element t were negative or alternatively if we consider the addition of one extra electron 
rather than a hole, then the topology does not frustrate hole motion and Nagaoka’s 
theorem implies that the ground state of the hopping Hamiltonian would be ferro- 
magnetic. Unfortunately the competition between the low spin Heisenberg ground state 
and the high spin hopping interactions is not as tractable as the previous limits and so 
we leave this problem to the approximate analysis of the next section. 

2.2. The ‘diamond’ connectivity 

Our second consideration is the topology depicted in figure 5. Once again there are two 
types of sites, ‘central’ sites which are connected to four ‘edge’ sites and edge sites which 
are connected to two central sites and one other edge site. For this case we consider the 
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o k / n  

Figure 6. The band structure of bonding non-interacting electrons in the ‘diamond’ geometry. 

Figure 7. A state from which the ground state of the Nagaoka problem on the ‘diamond’ 
topology can be constructed. The labels a, /3, y denote arbitrary but fixed spins. The lines 
with ‘encircled’ ends denote singlet bonds. 

Nagaoka problem first. There are now three atoms in a unit cell, but it is clear that 
taking anti-phase combinations of two neighbouring edge atoms yields a non-bonding 
combination. The single-particle excitation spectrum can again be deduced from the 
two relevant atoms per unit cell basis: 

H o  = ( - t ) r  
22/2 cos(ak/2) 1 

which diagonalises to yield the band structure: 

E; = (-t/2)[1 d(1 + 32cos2(ak/2))] 

which is depicted in figure 6. It is clear that this topology is also frustrated, and comparing 
the unfrustrated lower bound in figure 6 of -3.3723t with the highest lying excitation of 
2.3723t, we find that the effect is strong but seemingly not as strong as the previous case. 
i The Nagaoka problem for the frustrated limit of this lattice is also exactly soluble. A 
state which can be used to generate one of the multiply degenerate ground states is 
depicted in figure 7, where all the pairs of electrons on neighbouring edge atoms form 
spin singlets. Indeed the spins a, /3 and y all along the chain can take any values and still 
generate a ground state. These values serve to label the ground states and this situation 
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Figure 8. The states which go together with the state in figure 7 to yield the Nagaoka ground 
state. The hole is in the non-bonding orbital. The lines with ‘encircled’ ends denote singlet 
bonds. 

is perfectly analogous to the strong coupling chain where the degeneracy is 2Nin contrast 
to the previous degeneracy of N .  When the hopping Hamiltonian acts on this state it 
producesstateslike those depicted in figure 8. Taking these states as a basis, the operation 
of the hopping Hamiltonian is closed. This fact is not trivial and depends on the fact that 
the two states in figure 8 are non-orthogonal. Using delocalised combinations of these 
three states as a basis, we find: 

1 

[:: 
ak ak 

3 cos -- i sin - 
2 2 

which diagonalises to yield the bandstructure: 
E ;  = ( - t /2)[1 & d ( 9  + 16cos2(ak/2))] E: = ( - t )  (2.7) 

which is depicted ‘upside down’ in figure 9 as a particle spectrum for comparison with 
figure 6. 

The three states do not correspond to the three atoms per unit cell, but are restricted 
to the non-bonding combinations. The third state corresponds to an internalspin degree 
of freedom. In fact there is a ‘reciprocal relationship’ between the total spin of pairs of 
neighbouring edge atoms and the bonding symmetry of the hole when it lies on the bond. 
If the total spin is zero then the hole resides in the non-bonding combination and if the 
total spin is unity then the hole resides in the bonding combination. The total spin of 
each bond may be used to label the excitation spectrum of the Nagaoka problem. 

Comparing the single-particle spectrum in figure 6 with the excitation spectrum in 
figure 9,  we find that there is an energy saving of 0.6277t in using the Nagaoka ground 
state rather than the perfect ferromagnet. Also of interest is the fact that the ground 
state spin configuration does not completely unfrustrate the topology and the optimum 
value of 3.0t leaves a residual 0.3723t of unobtainable energy, when compared with the 
unfrustrated bound. 

Now let us move on the Heisenberg Hamiltonian considered on the topology of 
figure 5. We may write: 

where the first sum is over triangles, T ,  as before, but the bonds between neighbouring 
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1 
I 

ak/n 
Figure 9. The hand structure of the subspace defined by figures 7 and 8, which yields the 
Nagaoka ground state. 

edge sites, B ,  are double counted in the first sum and compensated for by the second sum 
where S4 and S5 are two neighbouring edge sites making the bond B.  The minimisation of 
this Hamiltonian is more sophisticated than before. Although it is clear that low spin is 
best for each triangle, a simultaneous choice of high spin for all bonds, B ,  is desirable. 
Unfortunately such a simultaneous choice is impossible in general and some triangles 
have high spin in the ground state. 

There is a second way to write the Heisenberg Hamiltonian on this topology which 
allows a separation of degrees of freedom in an analogous way to the non-bonding 
separation for the hopping Hamiltonian. If we use ‘ j ’ to index the centre atoms and ‘I’ 
to index the nearest neighbour pairs of edge atoms then: 

J J 
H, = -zsj ‘ S I  + -2 (SI  ‘ S I  - i) 

2 0’0 2 1  

where S I  = S4 + S5 is the sum of the spins on the two relevant edge atoms. In this 
representation it is clear that SI  * S I  the total spin of any bond commutes with the 
Hamiltonian and as such is a conserved quantity and all such total spins can be used to 
label the excitation spectrum. 

Singlet bond-spins effectively ‘cut’ the chain, and so the problem reduces to solving 
finite lengths of Heisenberg coupled spin chain with alternating spin magnitudes of one 
and a half. As the previous representation suggests, the Heisenberg energy is minimised 
with the edge bonds being spin one and so the ground state resides in the space where 
all edge bond spins are one. Unfortunately any linear chain of Heisenberg coupled spins 
is immensely difficult to solve, requiring the Bethe ansatz. The ground state is difficult 
to describe and involves long range singlets unlike any of the states so far considered. 

Our final consideration in this section is the behaviour of the full f-J Hamiltonian in 
the presence of one free charge carrier on the topology of figure 5 .  For this case there 
are three relevant states to consider: the total spin singlet ground state to the Heisenberg 
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Hamiltonian with long range singlet correlations, the short range singlet state which is 
the ground state to the frustrated Nagaoka problem and the perfect ferromagnet which 
is the ground state to the non-frustrated Nagaoka problem. There are two competitions 
to consider and neither are exactly soluble. Firstly we have the competition between low 
spin states where the Heisenberg interactions prefer triplet edge bonds and the frustrated 
hopping prefers singlet edge bonds. Secondly we have the competition between the 
Heisenberg triplet edge-bond state and perfect ferromagnetism. Both of these problems 
are severely complicated by the fact that the Heisenberg ground state is difficult to 
describe. Although we have found the excitation spectrum of a hole in the two Nagaoka 
ground states, depicted in figures 6 and 9 ,  we are unable to deduce the corresponding 
excitation spectrum for the Heisenberg ground state. These competitions will be con- 
sidered approximately in the next section. 

3. Polarons 

3.1. The ‘sawtooth’ geometry 

In this section we consider the full t-J model with one added charge carrier in an 
otherwise singly occupied ‘sawtooth’ topology. The frustrated case finds the short range 
singlet state of the last section for all values o f t  and J and we are considering the case of 
unfrustrated hopping in this section. Maintaining the positivity of our hopping matrix 
element, t ,  the frustrated hopping corresponds to an extra hole and the unfrustrated 
case, that we are moving onto, corresponds to an extra particle. 

When J dominates, we expect the particle to be in the zone boundary state of the 
previous section at energy Eo + U - 2.Ot. This state has lost 1.2361t from the Nagaoka 
bound and clearly when t dominates J much of this hopping energy can be regained 
locally by converting Heisenberg correlations into Nagaoka correlations in the vicinity 
of the hole. Our task is to try to model the changeover and to find a reasonable description 
for the ground state when t starts to dominate. 

In the absence of J ,  when t dominates, Nagaoka showed that ferromagnetism yields 
the ground state energy. In most topologies ferromagnetism is non-degenerate, but in 
our sawtooth topology the fact that neighbouring triangles are linked by a unique atom 
means that the non-frustrated Nagaoka ground state is multiply degenerate. If we 
consider figure 2 where the special spin is replaced by the hole, then the space of Nagaoka 
ground states finds all the depicted bonds as triplets. The hole always finds ‘triplet 
triangles’ and so sees ferromagnetism around all the closed loops in the topology. This 
satisfies the coherence restrictions of Nagaoka which only apply around closed loops. 
All the triplets can be chosen independently and so the degeneracy is huge, including 
states with all possible total spins, including total spin zero. 

The Heisenberg interactions prefer a low total spin and in all our calculations we find 
that total spin zero always yields the ground state. 

If we restrict attention to total spin zero then the first problem is to find a useful basis 
with which to describe the spin configurations. The separation into bonds depicted in 
figure 2 leads to a rather useful representation. We may label the states according to the 
total spin of each of these bonds. This splits the space into orthogonal subspaces and the 
size of each subspace is simply the number of total spin zero combinations which can be 
made out of the triplet bonds. If there are only a few triplet bonds then we find a 
‘degeneracy’ of 1,0,1,1,3,6 states for 0,1,2,3,4,5 triplet bonds respectively. We will 
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071 

(151 

I151 

1391 

Figure 10. Representatives from the states which form our polaronic basis. The number of 
similar states included is given in parentheses and the labels (a-d) are used in figures 11 and 
12. The character * on a bond denotes that the bond is triplet. This can be forced by taking 
the average of the two states with the relevant atoms interchanged. The lines with 'encircled' 
ends denote singlet bonds. 

assume that only a few singlet bonds become triplet in our calculations and moreover 
that the triplet bonds are localised in the vicinity of the hole. Clearly these assumptions 
become unjustifiable when t * J and the polaron becomes large, but the assumptions 
also break down when J S t because we know that the Heisenberg excitations are fairly 
long range distortions. 

When we allow the full t-J Hamiltonian to act on this basis then we find two 
disconnected subspaces. The subspace where all bonds are singlet is disconnected and 
yields the eigenstates of the previous section. Although the Nagaoka contribution 
respects the total spin of the bonds, the Heisenberg interactions do not and we find that 
the Hamiltonian connects all our other basis states to each other. This allows the 
possibility of smooth transitions where the average number of triplet bonds grows 
smoothly as J / t  reduces and this is what we find with the one exception of the initial first 
order transition out of the subspace outlined in the previous section. 

Our calculation is variational and we use a basis based on the states depicted in figure 
10. The states depicted in figure 10 all have total spin zero and so are composed of linear 
sums of valence bond configurations. The total spin of any particular bond may be 
deduced by 'swapping' the two relevant particles over. Spin singlet bonds are anti- 
symmetric under interchange, whereas triplet bonds are symmetric under interchange. 
Bonds can be forced into local triplet configurations by taking the average of the initial 
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Figure 11. (I) The energies of some of our variational calculations. The basis states included 
in the calculation are denoted by the labels of figure 10. (11) The wavefunction distribution 
for the lowest energy state we have found. The curves denote the probability of finding the 
hole in the subspaces indicated in figure 10. 

state together with the state where the relevant electrons making the bond are ‘swapped’ 
over. In figure 10, bonds which have been labelled * are to be considered symmetrised 
and therefore triplet bonds. The ‘polaron’ is delocalised with a chosen Bloch momentum 
and the t-J Hamiltonian projected into this subspace is diagonalised. The results are 
shown in figure 11. 

Figure 11(I) shows the energies of the lowest lying states, for various sizes of basis. 
We also present calculations at the zone centre ( k  = 0) and antiferromagnetic zone 
boundary ( k  = Q) for the largest variational basis of eighty-six states. The zone boundary 
state is always lower in energy than the zone centre, as it is in the Heisenberg ground 
state. The ferromagnetic ground state requires uniform zone centre phase coherence 
but this behaviour is restricted to the internal symmetry of the polaron. The bandwidth 
of the lowest lying excitation can be deduced from the gap between the two relevant 
curves, and we find that the bandwidth is minute suggesting both that there is a spin 
configuration sympathetic to each different Bloch momentum and secondly that the 
polarons are very ‘heavy’. A further way to understand the small bandwidths is to 
observe that the polarons are effectively localised, being tied to a sophisticated spin 
configuration in real space which only has a minor overlap with its neighbouring counter- 
part. 

The predicted behaviour is straightforward. For J > 0.6t we find that the Heisenberg 
ground state is relatively stable. As J is reduced below this value we predict a sharp 
transition into a polaron which is predominantly composed of the two-triplet states of 
figure 10(a). As J is further reduced, the polaron becomes better represented by the 
states of figure 10(a) as the Nagaoka contribution becomes more important. When J is 
reduced to about 0.4t, the three triplet bond states of figure 10(b) start to become 
important and the hole starts to use these states to gain more hopping energy. Before 
these states take over, however, there is a fairly sharp transition into a larger polaron 
withfour triplet bonds, at J - 0.27t. Studying the energies of figure 11(I) shows that if 
the variational states are restricted to the two and three triplet bond subspace, then the 
polaron would become three bonds wide only at the reduced energy of J - 0.2t. Closer 
inspection of the larger polaron shows that it is predominantly made out of states which 
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Figure 12. The bandstructure of our variational ground state a t J  = 0.9.  The dispersions are 
clearly narrower than either energy scale, since t = 1 andJ  = 0.5. 

are connected by hopping to the first state in figure 10(d). These states are only very 
weakly connected to the states in the smaller polaron by the Heisenberg Hamiltonian, 
which explains the rather sharp transition. 

In figure ll(I1) we give a breakdown of the spin character of the polarons we find. 
The change in character between the two triplet bond polaron to the four triplet bond 
polaron is the striking feature. 

Clearly our basis becomes an inadequate description for very small values of J / t ,  but 
it seems plausible that the polaron will grow in length in a rather ‘jerky’ way, being 
centred on states which firstly optimise the Heisenberg energy for a fixed number of 
triplet bonds and which secondly have a minute overlap with the corresponding states 
with less triplet bonds. 

For the cases we have considered we find that euen numbers of triplet bonds are 
preferred over odd numbers. One triplet bond involves a change of total spin, but it is 
not clear why three triplet bonds should be stepped over. We consider this a mystery 
and wonder whether five triplet bonds are ever stable. 

Finally we present in figure 12(a) a ‘band structure’ for our calculation when] = 0 .3 .  
The higher lying states are not particularly important but a careful analysis of the lowest 
four states shows them to have the character of the four states depicted in figure 10. The 
lowest lying branch is predominantly the two-triplet state. The next lowest lying branch 
is predominantly the three triplet state and the four-triplet state involved in the transition 
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is only third lowest. The fourth lowest branch corresponds to the states where two triplets 
are separated by a singlet bond. The bandwidth of the excitations is related to neither 
the hopping nor the Heisenberg energy scales. 

3.2. ‘Diamond’ geometry 

The basic difficulty in studying this limit is the fact that the Heisenberg Hamiltonian is 
not exactly soluble. We therefore have to resort to cluster calculations and try to deduce 
the behaviour of the infinite chain as a limit. 

Our first task is to analyse the ground state to the Heisenberg Hamiltonian. This will 
set the energy scale which the Nagaoka interactions need to dominate. We study the 
clusters depicted in figure 13. The smallest cluster is of interest since it achieves the lower 
bound suggested by (2.8) (viz E l  = ( -7J/4)NB since NT = 2NB) of (-7J/4) with the state 
depicted in figure 13(d). The larger clusters yield energies of -2.88155 and -4.0692.l 
respectively, which are quite far away from the lower bound. A comparison is achieved 
by measuring energiesper diamond and we find contributions of - 1.75J, - 1.4407J and 
- 1.3564Jfor the clusters of figure 13(a-c) respectively. This indicates that the probability 
of finding a high spin triangle is not negligible in the ground state. The situations where 
triangles have high spin require long singlet bonds and so we find a distribution of 
singlet bond lengths in this case unlike the previous cases where the ground states were 
describable in terms of nearest neighbour singlets. In fact states composed solely of 
nearest neighbour singlets are not far away in energy. The states depicted in figure 13(d- 
f) have energies -1.75J, -2.5J and -4.253 respectively, yielding -1.75J, -1.25J and 
- 1.4167Jperdiamond respectively. Although at this small cluster level the state in figure 
13(f) is actually the ground state, the infinite cluster limit yields -1.25J per diamond 
which is easily beaten by the chain of high edge-bond spins. The fact that these local 
distortions are quite near in energy is an important consideration in interpreting our 
polaron results. 
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In contrast to the Heisenberg ground state we have the Nagaoka ground states. For 
the frustrated case we find the states where all the edge-bonds are singlets, as depicted 
in figure 7. This state is simultaneously an eigenstate of the Heisenberg Hamiltonian 
with energy (-3J/4)NB. Each diamond loses about J when compared to the lower bound 
and about 0.61 when compared to the limit of the cluster calculations which we take to 
be the true ground state of the Heisenberg Hamiltonian. This then sets the energy scale 
for the frustrated competition, with bonds being turned from triplet into singlet if the 
gain in hopping energy is larger than 0.U. 

The unfrustrated Nagaoka problem is once again quite subtle. Since each diamond 
is connected to its neighbours by a unique atom, again we find that Nagaoka ferro- 
magnetism is degenerate. The ground states find one of the two trianglesin each diamond 
with its maximum spin of three-halves; in fact the triangle furthest from the hole. 
With this choice the hole finds ferromagnetic diamonds and hence has Nagaoka phase 
coherence around all the closed topological loops, ensuring the ground state energy. 
The ground state degeneracy is the same as that found in a chain of independent spins 
of magnitude three-halves and chain length NE. This includes states of very low spin and 
we find the state which is sympathetic to the Heisenberg interactions in the subspace 
with minimum total spin. Employing the representation of (2.8) yields a lower bound 
on the Heisenberg energy of E l  = ( -J/4)NB, on the assumption that all the remaining 
triangles have the minimum possible spin. Although this bound is unobtainable in 
general, it does give a measure of the energy scale for the unfrustrated competition. The 
Nagaoka contribution from a diamond will turn the relevant triangle from low spin to 
high spin if the gain in hopping energy is larger than about 1.OJ. 

So far we have considered the spin correlations well away from the hole, now we 
consider the hole itself. For the previous case of the sawtooth topology, although there 
were two distinct types of sites, even when J t the hole delocalised across all sites on 
an energy scale oft. This occurs because the Heisenberg contribution is equal on all sites 
on the sawtooth geometry. This is not true for the diamond geometry. When J % t the 
Heisenberg energy on the diamond topology is maximised when the hole sits on the 
bond sites. The hole can still delocalise on the two atoms which constitute the bond, 
yielding a gain of t. For the frustrated case we find the hole in the non-bonding com- 
bination of orbitals whereas for the unfrustrated case the hole resides in the bonding 
combination. The ‘reciprocal relationship’ then ensures that if the hole moves on, the 
bond is left in a singlet or triplet respectively. For the frustrated case the hole remains 
localised in the vicinity of the singlet bond, which is a constant of the motion, but for the 
non-frustrated case the hole can freely delocalise. 

We now move on to calculations involving the competition between Nagaoka and 
Heisenberg correlations. We perform ground state calculations for the full t-J Ham- 
iltonian acting on a single charge carrier which is restricted to move in one of the finite 
clusters of figure 13(a, b).  

The smallest cluster is particularly useful since it demonstrates the variety of possible 
spin correlations with a host of phase transitions. The frustrated case is straightforward 
and involves the two states depicted in figure 14(a). When J B t the hole resides on the 
edge sites in the state 11) with the hole in the non-bonding orbital at energy -J - t. As 
the hopping is increased, the only effect is that the hole hybridises onto the central sites 
into the state 12)’ yielding an energy of -2.3028t - 0.9097J, a huge gain in hybridisation 
energy for a very modest loss of Heisenberg energy. The unfrustrated limit involves two 
phase transitions. When J > 1. It, we find the hole in the state predominantly composed 
of 17) with asmall admixture of I?), asdepictedinfigure 14(b). These states are completely 
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Figure 14. States which make up some of the ground states of the cluster of figure 13(a). The 
lines with ‘encircled’ ends denote singlet bonds. 

analogous to the frustrated case, but with the bonding combination of orbitals. In the 
states 11) and li) the two bonds on the opposite side of the diamond from the hole have 
the highest probability of being singlet, being three-quarters each. This is perfect for the 
frustrated case but disastrous for the unfrustrated case. WhenJ < 1. It, the unfrustrated 
case evolves a new ground state which remains total spin half but finds the bonds opposite 
the hole with the lowest probability of being singlet, being one quarter each. When 
J < 0.173t there is a final transition to the high spin state of Nagaoka. 

The second cluster of figure 13 exhibits the basic physics to be expected in the 
frustrated limit. There are now two bonds and even in the limit J * t one of the two 
bonds is implicitly singlet due to the reciprocal relationship. As J is reduced there is a 
sharp transition as the second bond is driven singlet. This transition occurs when J = 
0.48t. We study the wavefunction in figure 15, giving the probabilities for the hole to sit 
on each of the possible atoms. When J * t the tendency to sit on edge sites is observed 
and even quite close to the first order transition the hole still avoids the triplet bond. 
The transition can be associated with the hole ‘spreading out’ into the triplet region. The 
basic solution that is found for the frustrated limit is that the hole tends to move around 
in the region of the lattice with singlet edge bonds gaining optimum hybridisation in that 
region with minor loss in Heisenberg energy and simultaneously avoiding any region of 
triplet bonds where the Heisenberg energy is optimised until the energy gain is large 
enough to turn a bond from high to low total spin. 

The unfrustrated limit for this cluster does not show the phase transitions of the 
smallest cluster although the changes in wavefunction are very similar. In figure 16 we 
picture the wavefunction, giving the probabilities for the hole to sit on each of the atoms, 
together with a breakdown of the spin correlations whilst the hole is restricted to lie on 
the edge bonds. When J % t the hole sits on an edge bond on one of the diamonds while 
the other diamond is predominantly in the state depicted in figure 13(d). The hole cannot 
hybridise onto a ‘6-site’ because the probability of leaving the edge-bond triplet is 
negligible. As the hopping is increased, firstly the diamond on which the hole sits 
becomes higher spin, marked by the possibility for the hole to visit the ‘b-sites’, and the 
drop in probability for the state depicted in figure 13(d) to be found (curve marked (al)). 
Finally at J 0. It both diamonds become high spin in a smooth but rapid transition. 
The whole system remains a total spin singlet. This is the basic physics of the unfrustrated 
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Figure 15. The wavefunction decomposition of the frustrated ground state to the cluster 
depicted in figure 13(b), when the ground state has one singlet and one triplet edge-bond. 
The labels denote the atoms, with ‘1’ indicating the atoms by the singlet edge-bond and ‘2’ 
indicating the atoms by the triplet edge-bond. The state is the ground state only to the left 
of the line labelled ‘transition’. 
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Figure 16. The wavefunction decomposition of the unfrustrated ground state to the cluster 
depicted in figure 13(b). The labels denote the atoms and the two curves marked (al)  and 
(a2 )  denote the probabilities that: ( a l )  the ‘diamond’ without the hole isin the state of figure 
13(d); and (a2) the total spin of the triangle furthest from the hole is three halves both given 
that the hole is on an edge-bond. 
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limit. The hole turns neighbouring diamonds from low spin to high spin states, within 
the total spin zero subspace. 

4. Conclusions 

The major achievement in this article has been the construction of exact ground states 
to quantum mechanical Hamiltonians of interest in solid state physics. 

We have studied two topologies; the ‘sawtooth’ and ‘diamond’ topologies. The 
ground state to the Heisenberg Hamiltonian has been found for the ‘sawtooth’ lattice 
whereas the ‘diamond’ topology has been shown to have the same ground state as an 
infinite chain of spins of alternating lengths one and one half, although this subsidiary 
problem has not been solved. The Nagaoka problem, where one charge moves around 
in an otherwise half filled infinitely strong coupling lattice, has been solved for both 
topologies. The ‘sawtooth’ lattice is completely unfrustrated by the state composed of 
nearest neighbour singlets and the ‘diamond’ lattice remains weakly frustrated in the 
ground state where all edge-bonds are nearest neighbour singlets. 

We have also studied the full t-J model with the intention of constructing analytic 
‘spin polarons’. We have obtained variational states which we believe exhibit the basic 
physics, although our polaronic calculations are in no sense rigorous. 

For the ‘sawtooth’ geometry we find that the Heisenberg and Nagaoka models are 
simultaneously soluble in the frustrated limit, but that there is a competition between 
low spin Heisenberg correlations and high spin Nagaoka correlations in the unfrustrated 
limit. We predict a sequence of changes in behaviour as a spin polaron forms and 
changes size. The hole destroyspairs of singlet bonds, replacing them with triplet bonds. 
Although locally we find high spin loops, the total spin remains low. The first transition 
is first order but the second transition is smooth but rapid. 

For the ‘diamond’ geometry we find two distinct types of competition. In the frus- 
trated limit we find a polaron which increases in size by discrete jumps. The lattice can 
be split into two regions; a region where the edge-bonds are singlet and the hole wanders 
around at will, and a region where the edge-bonds are triplet and the hole is very rarely 
found. There are a sequence of first order transitions as the hole extends the size of its 
domain by turning edge-bonds from triplet to singlet. In the unfrustrated limit we find 
a competition within the subspace where all edge-bonds are triplet. The Heisenberg 
interactions want low spin ‘diamonds’ and the Nagaoka interactions prefer high spin 
‘diamonds’. Once again we find polarons with smooth but rapid transitions between 
different behaviours. The hole turns neighbouring ‘diamonds’ from low to high spin in 
a sequence of smooth transitions. 

We have found concrete examples of ‘spin polarons’. The polarons are very heavy 
being essentially localised around their spin distortions. Transitions between polarons 
of different sizes are very rapid. The total spin of the system is a very poor measure of 
the characteristics of the polaron since the total spin remains zero while dramatic 
changes in behaviour occur. A careful study of local spin correlations is required if an 
understanding of the polaron is to be achieved. 

What relevance do our results have to real materials and in particular to more 
reasonable topologies? The basic difference between the present geometries and higher 
dimensional examples are the number and variety of loops. The basic reason that the 
present cases are soluble is that the loops are all disconnected from each other and the 
correlations can be solved locally. In higher dimensions interpenetrating loops soon 
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destroy any hope of exact analysis, but what effects will they include? We believe that 
it is only necessary to consider small loops because in real materials the probability that 
a hole circuits a large loop without a Heisenberg-like interaction intervening is small. 
The larger loops can be expected to smooth out any changes in polaronic behaviour, but 
not to change the basic picture. 

Polarons seem to be a useful concept for the study of the strong coupling Hubbard 
model. 

Note added inproof. The competition between the two types of low energy state for the Heisenberg model on 
the diamond connectivity is not adequately resolved by our small cluster calculations and will be reexamined 
at a later date. 
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